Chiral N-substituted glycines can form stable helical conformations.
نویسندگان
چکیده
BACKGROUND Short sequence-specific heteropolymers of N-substituted glycines (peptoids) have emerged as promising tools for drug discovery. Recent work on medium-length peptoids containing chiral centers in their sidechains has demonstrated the existence of stable chiral conformations in solution. In this report, we explore the conformational properties of these N alpha chiral peptoids by molecular mechanics calculations and we propose a model for the solution conformation of an octamer of (S)-N-(1-phenylethyl)glycine. RESULTS Molecular mechanics calculations indicate that the presence of N-substituents in which the N alpha carbons are chiral centers has a dramatic impact on the available backbone conformations. These results are supported by semi-empirical quantum mechanical calculations and coincide qualitatively with simple steric considerations. They suggest that an octamer of (S)-N-(1-phenylethyl)glycine should form a right-handed helix with cis amide bonds, similar to the polyproline type I helix. This model is consistent with circular dichorism studies of these molecules. CONCLUSIONS Peptoid oligomers containing chiral centers in their sidechains present a new structural paradigm that has promising implications for the design of stably folded molecules. We expect that their novel structure may provide a scaffold to create heteropolymers with useful functionality.
منابع مشابه
NMR determination of the major solution conformation of a peptoid pentamer with chiral side chains.
Polymers of N-substituted glycines ("peptoids") containing chiral centers at the alpha position of their side chains can form stable structures in solution. We studied a prototypical peptoid, consisting of five para-substituted (S)-N-(1-phenylethyl)glycine residues, by NMR spectroscopy. Multiple configurational isomers were observed, but because of extensive signal overlap, only the major isome...
متن کاملStable helical peptoids via covalent side chain to side chain cyclization.
Peptoids are oligomeric N-substituted glycines with potential as biologically relevant compounds. Helical peptoids provide an attractive fold for the generation of protein-protein interaction inhibitors. The generation of helical peptoid folds in organic and aqueous media has been limited to strict design rules, as peptoid-folding is mainly directed via the steric direction of alpha-chiral side...
متن کاملNovel peptoid building blocks: synthesis of functionalized aromatic helix-inducing submonomers.
Peptoids, oligo-N-substituted glycines, can fold into well-defined helical secondary structures. The design and synthesis of new peptoid building blocks that are capable of both (a) inducing a helical secondary structure and (b) decorating the helices with chemical functionalities are reported. Peptoid heptamers containing carboxamide, carboxylic acid or thiol functionalities were synthesized, ...
متن کاملHelical peptoid mimics of lung surfactant protein C.
Among the families of peptidomimetic foldamers under development as novel biomaterials and therapeutics, poly-N-substituted glycines (peptoids) with alpha-chiral side chains are of particular interest for their ability to adopt stable, helical secondary structure in organic and aqueous solution. Here, we show that a peptoid 22-mer with a biomimetic sequence of side chains and an amphipathic, he...
متن کاملSynthesis and structural characterization of BINOL-modified chiral polyoxometalates.
Chiral ligand-modified polyoxometalates (POMs) were successfully synthesized by the introduction of BINOL into the dititanium-substituted POM in an organic medium and characterized by X-ray crystallography, spectroscopy, and elemental analyses. These BINOL-modified POMs were stable in the solution state and showed catalytic activity for asymmetric oxidation of thioanisole.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Folding & design
دوره 2 6 شماره
صفحات -
تاریخ انتشار 1997